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Trait-based sensitivity of large mammals to a 
catastrophic tropical cyclone

Reena H. Walker1,12, Matthew C. Hutchinson2,3, Justine A. Becker2,4, Joshua H. Daskin5,6, 
Kaitlyn M. Gaynor7, Meredith S. Palmer2, Dominique D. Gonçalves8,9, Marc E. Stalmans8, 
Jason Denlinger8, Paola Bouley10,13, Mercia Angela10, Antonio Paulo10, Arjun B. Potter2,14, 
Nikhail Arumoogum11, Francesca Parrini11, Jason P. Marshal11, Robert M. Pringle2,15 ✉ & 
Ryan A. Long1,15 ✉

Extreme weather events perturb ecosystems and increasingly threaten biodiversity1. 
Ecologists emphasize the need to forecast and mitigate the impacts of these  
events, which requires knowledge of how risk is distributed among species and 
environments. However, the scale and unpredictability of extreme events complicate 
risk assessment1–4—especially for large animals (megafauna), which are ecologically 
important and disproportionately threatened but are wide-ranging and difficult  
to monitor5. Traits such as body size, dispersal ability and habitat affiliation are 
hypothesized to determine the vulnerability of animals to natural hazards1,6,7. Yet it has 
rarely been possible to test these hypotheses or, more generally, to link the short-term 
and long-term ecological effects of weather-related disturbance8,9. Here we show  
how large herbivores and carnivores in Mozambique responded to Intense Tropical 
Cyclone Idai, the deadliest storm on record in Africa, across scales ranging from 
individual decisions in the hours after landfall to changes in community composition 
nearly 2 years later. Animals responded behaviourally to rising floodwaters by moving 
upslope and shifting their diets. Body size and habitat association independently 
predicted population-level impacts: five of the smallest and most lowland-affiliated 
herbivore species declined by an average of 28% in the 20 months after landfall, while 
four of the largest and most upland-affiliated species increased by an average of 26%. 
We attribute the sensitivity of small-bodied species to their limited mobility and 
physiological constraints, which restricted their ability to avoid the flood and endure 
subsequent reductions in the quantity and quality of food. Our results identify general 
traits that govern animal responses to severe weather, which may help to inform 
wildlife conservation in a volatile climate.

Extreme climate and weather events—abrupt meteorological phenom-
ena with intensity and/or impact outside normal historical variability—
are becoming more frequent and severe1,10. Tropical cyclones cause 
inordinate damage, in large part by triggering catastrophic floods. 
Although the detection and attribution of storm trends remains chal-
lenging, there is growing evidence that the strength and proportion 
of major tropical cyclones has increased in recent decades, together 
with extreme rainfall10–13. Models predict a high likelihood of further 
increases in peak cyclone wind speeds, rainfall rates and compound 
flood risk arising from deluge, storm surge and river flow10,11. These 
factors have prompted urgent calls for research on cyclone ecology 

to guide forecasts and adaptation plans for biodiversity and ecosys-
tems1,8,9. However, the unpredictable nature of severe cyclones makes 
them difficult to study. Remote sensing and long-term vegetation plots 
have facilitated assessment of cyclone effects on landscapes14,15, but 
there are comparatively few direct studies of animals, most of which 
involve small-bodied species on oceanic islands6,7,16–19.

In the 1990s, a series of hurricanes struck small experimental islands 
in the Bahamas, supplying unusually rich insight into the effects of 
cyclones on animal communities and showing that species’ responses 
were related to their traits: larger species (lizards) were more resist-
ant to cyclone effects, whereas better dispersers (spiders) recovered 
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faster6. These results hinted at a general trait-based theory of species’ 
robustness—that is, the maintenance (resistance) and recovery (resil-
ience) of normal abundance and behaviour—to climatic catastrophes7. 
Yet the extent to which these principles scale up to large animals in 
continental systems is unknown.

Unlike comparisons of insular lizards and wind-borne arthropods, 
body size and dispersal ability are linked in terrestrial mammals20,21. As 
a result, larger species might be both more resistant and more resilient 
to cyclones. However, alternative possibilities are also plausible. Among 
large mammalian herbivores and carnivores, most or all species may be 
sufficiently large and mobile to escape or withstand the acute impacts 
of extreme weather, and robustness may thus vary little or depend on 
traits that do not covary with size22,23. Over longer timescales, large 
size might enhance robustness (if lower mass-specific nutritional 
requirements buffer disruptions of food supply) or reduce it (owing 
to higher total nutritional requirements and slower reproduction)24,25. 
In light of such uncertainties, recent reviews have stressed the need for 
process-based understanding of how species’ traits regulate responses 
to cyclones across spatial and temporal scales, and how impacts on 
populations and communities emerge from processes at lower levels 
of organization8,9. These remain elusive goals; we know of no study that 
has been able to track the individual-level behavioural mechanisms 
that underpin community-level responses to cyclones.

Here we investigated how a diverse assemblage of large mammals 
in Mozambique’s Gorongosa National Park responded to Cyclone Idai, 
one of the most devastating tropical cyclones recorded in the Southern 
Hemisphere1,26,27. The historically abundant megafauna of Gorongosa’s 
mesic savannas (average rainfall, approximately 850 mm yr−1) and pro-
ductive floodplain grasslands declined by more than 90% during the 
Mozambican Civil War (1977–1992) but have since recovered consider-
ably28. Ongoing long-term research on the movements, distributions, 
diets and population dynamics of 13 herbivore species—from 17-kg 
oribi to 4,000-kg elephant—and their predators (lion and African wild 
dog) provided a unique opportunity to study the impacts of an extreme 
weather event on a community comprising some of the world’s largest 
terrestrial animals. As in several other African protected areas, large 
parts of Gorongosa’s Rift Valley Basin flood or burn each year29,30, mean-
ing that resident species have experience with inundation and other 
disturbances. Using multiple data streams, we compared animal behav-
iour and performance in the hours, days and months after Cyclone Idai 
with those observed both immediately before the cyclone and during 
the corresponding seasonal intervals in normal (non-cyclone) years. We 
tested two general trait-based hypotheses. First, that species affiliated 
with wooded, higher-elevation habitats are more robust to cyclones 
than those affiliated with open, lower-elevation habitat, because the lat-
ter is more prone to flooding. Second, that robustness scales positively 
with body size, because larger mammals have (1) higher mobility and 
thus can travel farther to escape affected habitats and find food 20,21, 
and (2) lower mass-specific metabolic rates and thus greater ability 
to endure the effects of reduced food supply in the months after the 
storm25. Habitat affiliation and body size were uncorrelated (r = −0.34, 
P = 0.26; Extended Data Fig. 1), enabling us to evaluate the effects of 
each trait independently.

Cyclone Idai made landfall on 15 March 2019 (the end of the wet sea-
son in a typical year) and passed over Gorongosa (approximately 100 km 
inland), bringing maximum wind speeds of more than 188 km h−1, tor-
rential rains of more than 200 mm in less than 24 h, and floodwaters 
more than 5 m deep around Lake Urema at the centre of the park (Fig. 1 
and Extended Data Fig. 2).

Some animals were unable to evade the rising floodwaters: three 
of eight GPS-collared bushbuck, the smallest individually monitored 
herbivore species, died within a week of landfall. The bushbuck that per-
ished were smaller than the survivors (mean 35.7 kg versus 46.0 kg) and 
included the smallest male and smallest two females (Extended Data 
Fig. 3a,b). Although these three individuals began moving towards 

higher and drier ground, they did not avoid the flood edge and died in 
areas inundated with more than 1.5 m of water (Fig. 1d and Extended 
Data Fig. 3c). Bushbuck sought out elevated positions at both macro-
topographic scales and microtopographic scales, climbing upslope 
while also perching atop termite mounds—hillocks up to 5 m high and 
20 m wide that became tiny islands in the flood (Fig. 2a). The path of 
one survivor shows how it ‘hopped’ from mound to mound, passing 
quickly through the flooded areas in between (Fig. 1d). By contrast, 
we did not detect any mortality among four larger species for which  
we had GPS location data: nyala (98 kg, n = 4), kudu (210 kg, n = 12), sable 
(223 kg, n = 3), and elephant (4,000 kg, n = 13). Many surviving herbi-
vores vacated their previous ranges, moving to higher-elevation areas 
away from floodwaters before settling in areas of relative safety (Fig. 2b 
and Extended Data Fig. 4a). The degree of displacement from prior 
ranges was positively related to species’ affiliation with low-elevation 
floodplain habitat and negatively correlated (albeit less strongly) with 
body mass (Extended Data Fig. 4b). These results are based on rela-
tively small sample sizes of collared herbivores but provide striking 
real-time evidence of how different animals navigated the landscape 
during the storm and its aftermath, and the findings are consistent 
with other results below showing that small and floodplain-affiliated 
species were most affected by Cyclone Idai.

Data from a 300-km2 camera-trap grid31 (30 cameras in 5-km2 hex-
agonal cells) showed that other herbivore species shifted their space 
use in similar ways. We found strong interactive effects of time since 
landfall and distance to Lake Urema on species’ distributions (Extended 
Data Table 1), indicating that Cyclone Idai pushed herbivores out of 
low-lying areas and into elevated woodland, with activity near the lake 
declining sharply in the weeks after landfall relative to typical years 
(Fig. 2c). Rates of return to these areas varied. Species such as impala 
rebounded to pre-cyclone levels even before the flood fully subsided, 
whereas warthog and waterbuck (the two most floodplain-affiliated 
species with enough detections for analysis) remained skewed towards 
higher elevations into August, long after waters had receded below 
pre-cyclone levels (Fig. 2c).

In addition to crowding herbivores into elevated habitat, Cyclone 
Idai altered the spatiotemporal distribution of forage availability. 
The extreme and unseasonal flooding reversed the typical growth 
pattern of understory plants in the flood zone (Fig. 3a). Vegetation in 
this area remained significantly less productive than usual for three 
months after landfall (March to May; Fig. 3a). This effect was far less 
pronounced in elevated woodland areas that were not flooded after 
Idai (Fig. 3b). In the late dry season (October), productivity was mar-
ginally higher than in normal years, perhaps owing to atypically high 
soil moisture.

Cyclone-induced changes in food availability, coupled with upland 
shifts in distribution, altered herbivore diets. Almost all species ate 
a significantly different set of plant taxa throughout 2019 than in 
the corresponding seasons of 2016 and 2018 (Extended Data Fig. 5), 
and the turnover in diet composition from before to after the cyclone 
was significantly greater than the typical degree of between-season 
dietary dissimilarity (Fig. 4a). Although the nature and strength of 
these differences varied across species and seasons, several broad 
trends emerged. Post-cyclone diets tended to include less grass (espe-
cially in mixed-feeding species that characteristically eat both grasses 
and non-grasses; Extended Data Fig. 6a), a greater number of plant 
families (Extended Data Fig. 6b), and plant species that were taller 
(Fig. 4b) and less nutritious (lower in digestible protein, phosphorus 
and sodium, and higher in lignin; Figs. 4c and 5a and Extended Data 
Fig. 6c–f) than usual, consistent with a shift toward ‘woodier’ diets32. 
Dietary differences between species (that is, resource partitioning) 
were also stronger in the early dry season ( July) of 2019 than in normal 
years (Fig. 4d). We propose that the depletion of understory plants and 
crowding of animals into high and dry areas resulted in stronger compe-
tition, pressuring herbivores to differentiate their diets and accept an 
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atypically wide range of relatively low-quality forage33. In some cases, 
the cyclone effects on diet metrics were contingent on herbivore traits, 
with small-bodied and/or floodplain-affiliated species exhibiting higher 
turnover, greater increases in diet breadth, and greater reductions in 
dietary digestibility (Extended Data Table 2). Although these effects 
were not consistently significant across seasons, all significant effects 
were in the predicted direction.

The post-cyclone period of lower food availability and diet quality 
was associated with reduced nutritional condition in small-bodied 
antelopes. Bushbuck and nyala, the two smallest GPS-collared herbi-
vore species (less than 100 kg), were in worse condition in 2019 than 
in previous years (2014–2018). The condition of kudu, a larger and 
wider-ranging congener with comparable dietary habits34, was unaf-
fected by the cyclone (Fig. 4e). Coupled with evidence of reduced diet 
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Fig. 1 | Cyclone Idai led to extensive flooding in Gorongosa. a, After making 
landfall on 15 March 2019, Cyclone Idai50 (black line shows central path; dots 
show position every 6 h) passed over Gorongosa National Park (shaded dark 
grey) in central Mozambique. b, Heavy rains from Idai inundated a network of 
37 flood sensors; flood extent did not return to pre-cyclone levels until roughly 
31 May (Julian day 151 of 2019). c, Within a week of landfall, the flood extent 
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in the week before landfall to 117.7 km2 in the week after; total census area, 
165.8 km2) and maximum flood depth increased nearly threefold (from 2.0 m to 
5.9 m). Lake Urema (top right) and roads (black lines) are shown to facilitate 
comparison. The rectangle shows the area of interest in d. d, Hourly GPS fixes 

of two bushbuck, one that survived (black silhouette) and one that died  
(white silhouette). Purple points show positions in the month before the 
cyclone; yellow points show positions in the month after the cyclone; the red 
point shows the site of death. The survivor left its home range and moved up 
the elevational gradient, away from Lake Urema, using termite mounds as 
refuges from the flood (enlarged image at left) before establishing a new home 
range approximately 3.5 km away. The individual that died started moving 
upslope but did not outpace the flood and died within 500 m of its original 
home range. This pattern was consistent across the small sample size of five 
bushbuck that survived and three that died (Extended Data Fig. 3).



4 | Nature | www.nature.com

Article

quality after Idai, both in general (Extended Data Fig. 6) and for these 
species in particular (Fig. 4f), this result supports our hypothesis that 
larger animals were better buffered against nutritional limitation24. 
Although some studies predict that higher absolute energetic require-
ments might make larger herbivores more vulnerable to perturbations 
in food availability35, our results align better with theory and data sug-
gesting that larger herbivores are more resistant to nutritional limita-
tion owing to their ability to rely on endogenous reserves and subsist 
on low-quality diets36,37.

The stronger individual-level effects of Cyclone Idai on small-bodied 
and floodplain-associated species translated into uneven population- 
level impacts. From 1994 to 2018, the herbivore populations in this 

study grew almost monotonically, as determined by regular aerial 
surveys28. The post-Idai survey completed  in November 2020,  
20 months after landfall, documented the first declines in several of 
these populations since the civil war (Extended Data Fig. 7). Oribi and 
reedbuck—two of the smallest (17–76 kg) and most floodplain-affiliated 
(65–81% of occurrences) species—declined by 47–53%. By contrast,  
3 larger species with lower floodplain affiliation—wildebeest, buffalo 
and elephant (214–4,000 kg)—each increased by around 27%. In a set 
of 16 candidate models including main effects and interactions of body 
size, diet type (percentage of grass), and habitat affiliation, size alone 
best predicted proportional change in abundance after Cyclone Idai 
(R2

adj = 0.28, P = 0.04, Akaike weight (AICŵ) = 0.31); habitat affiliation 
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Degree of displacement scaled negatively with species’ floodplain affiliation 
and positively with body size (Extended Data Fig. 4b). c, Data from camera  
traps over 3 years, showing the distribution through time of five well-sampled 
species relative to distance from Lake Urema (that is, the proportion of total  
detections per species at different distances from the lake—here, binned as 
‘near’, ‘mid’ and ‘far’ to facilitate visualization, but modelled statistically using 
a continuous distance term; see Extended Data Table 1) in the cyclone year 
(2019; yellow) versus two representative non-cyclone years (purple; average 
across 2017 and 2018). Binned camera locations are shown with black dots at 
right. Shading shows the duration that flooding persisted beyond the pre- 
cyclone extent (15 March–31 May). Fluctuations in slope of the yellow lines show 
how the cyclone displaced species away from low-lying open habitat and into 
higher-elevation areas away from Lake Urema, with variable rates of return in 
relation to flood duration.
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alone was the second-best model and fit comparably well (difference 
in the Akaike information criterion (∆AICc) = 0.96, R2

adj = 0.22, P = 0.06, 
AICŵ = 0.19; Supplementary Table 2). These relationships did not occur 
in normal years: neither body mass nor habitat affiliation predicted 
changes in abundance from 2014–2016 or 2016–2018 (P > 0.3) (Fig. 5).

Waterbuck, a 215-kg floodplain-affiliated grazer, exemplified this 
trend. From 1994 to 2018, the waterbuck population grew logistically 
from fewer than 1,000 individuals to more than 57,000 individuals28,37. 
When the 2020 census revealed an unprecedented number of dead 
animals, observers conducted a systematic carcass survey, estimating 
at least 3,300 dead waterbuck—almost all of them in the floodplain (7.44 
carcasses per km2, versus 0.24 per km2 in woodland). These mortalities, 
corresponding to roughly 6% of the 2018 population estimate and half 
of the difference in abundance between 2018 and 2020, contributed 
to the first definitive waterbuck decline (−12%) in more than 25 years.

The two large-carnivore species in Gorongosa at the time of this study 
exhibited behaviours consistent with a weak response to Cyclone Idai, 
although the available data are sparser than for herbivores. We observed 
no mortalities among the 22 individuals with known fates (14 wild dogs, 
30 kg; 8 lions, 190 kg). The two GPS-collared lions for which we were able 
to fit step-selection functions moved to higher elevations and avoided 
the flood edge in the weeks after landfall, whereas the lone wild dog 
pack in the park exhibited no significant changes in movement (Extended 
Data Fig. 8a). Lions (n = 8) and wild dogs showed moderate displace-
ment from their previous ranges (Extended Data Fig. 8b). We detected 
no change in lion diets, which were dominated by warthog both before 
and after the cyclone (Extended Data Fig. 8c). Wild dog diets appeared 
to shift in concert with prey distribution: waterbuck accounted for a 
greater proportion of kills after the cyclone, especially in the immediate 
aftermath (Extended Data Fig. 8c–e), when large numbers of waterbuck 
were displaced from the floodplain into wooded areas frequented by 
wild dogs (Fig. 2c). Lion and wild dog populations both increased from 
2018 to 2020 (Extended Data Fig. 7). Analogously, carnivore populations 
often respond positively to drought, because hunting success increases 

when herbivores are weak and congregate around limited resources38,39. 
Although sample-size limitations temper our conclusions about the 
impacts of Cyclone Idai on carnivores, it is possible that short-term 
impacts of extreme weather events on large mammals vary predict-
ably with trophic level, and future research could test this hypothesis.

Collectively, our results support trait-based hypotheses about animal 
robustness to tropical cyclones and show how responses propagate 
across spatiotemporal scales and levels of organization, from indi-
vidual behaviours to population trends and community structure. Small 
size and affiliation with low-lying habitat were associated with lower 
resistance and resilience of herbivores to Cyclone Idai across timescales 
ranging from hours and days (reflecting differential abilities to evade 
rising floodwaters) to more than a year (owing to differential degrees 
of nutritional shortfall and ability to tolerate it). The sensitivity of these 
species, despite their ecological and evolutionary experience with 
annual flooding in Gorongosa, highlights a distinction between cyclical 
and unpredictable risk40; animals entrained by rhythmic perturbations 
of moderate intensity might even be especially vulnerable to unsea-
sonal extreme events. Our study answers recent calls to investigate 
cyclone impacts, identify mechanisms that link ecological responses 
across scales, and plug geographic and taxonomic gaps in cyclone 
ecology8,9. Our findings are consistent with prior work linking body size 
and mobility to the robustness of small animals to cyclones on islands6, 
supporting the scalability of these relationships and the proposition7 
that general trait-based models would aid in forecasting impacts of 
extreme events on terrestrial animals at large.

More time is needed to know whether Cyclone Idai will have lasting 
effects on community structure. Higher fecundity in small-bodied spe-
cies might enable rapid recovery, thereby offsetting the costs of lower 
resistance and equalizing overall robustness6. Yet it is noteworthy that 
Idai at least transiently tipped the scale in favour of large-bodied species 
that predominated historically29, perhaps signalling a tipping point in 
Gorongosa’s postwar community reassembly (ref. 41 describes a com-
parable event). More broadly, our study highlights a need to consider 
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Fig. 4 | Cyclone impacts on herbivore diets and nutritional condition.  
a, Temporal turnover in herbivore diets from before Cyclone Idai to after 
Cyclone Idai (yellow points; Bray–Curtis dissimilarity, November 2018 to  
April 2019) was greater than that observed within or between non-cyclone 
years (purple boxes; Bray–Curtis dissimilarity between all pairs of seasons in 
2016 and 2018). The centre line shows the median, box edges delineate the 
interquartile range, whiskers extend up to 1.5× the interquartile range and  
dots indicate outliers. Mixed-effects model with beta error distribution  
across all species, β = 0.53 ± 0.16 (mean ± s.e.m.), P = 0.001. b–d, On average, 
relative to non-cyclone years (2016 and 2018), herbivore diets after Idai 
comprised taller plant species (b; linear mixed-effects models; wet season 
2018: β = −0.29 ± 0.07; early dry season 2016: β = −0.40 ± 0.09; early dry season 
2018: β = −0.25 ± 0.08; late dry season 2018: β = −0.10 ± 0.07), contained less 
protein in the early dry season (c; linear mixed-effects models; wet season 2018:  

β = 0.02 ± 0.17; early dry season 2016: β = −0.33 ± 0.17; early dry season  
2018: β = −0.38 ± 0.16; late dry season 2018: β = −0.01 ± 0.21), and exhibited 
greater interspecific differentiation in the early dry season, as indexed by  
the mean R2 of perMANOVA between each pair of herbivore species33  
(d; mixed-effects models with beta error distribution; wet season 2018: 
β = −0.02 ± 0.07; early dry season 2016: β = −0.37 ± 0.04; early dry season  
2018: β = −0.40 ± 0.04; late dry season 2018: β = 0.04 ± 0.04). Sample sizes  
are presented in Supplementary Table 1. e, Nutritional condition of collared 
herbivores after Idai (2019) and in 2014–2018 (t-tests; bushbuck: t = 6.74, 
d.f. = 28.5; nyala: t = 4.47, d.f. = 10.2; kudu: t = 0.61, d.f. = 36.9). f, Dietary protein 
content for bushbuck and nyala was lower after Idai than in non-cyclone years 
during the period leading up to body condition measurements in e (mid-dry 
season), whereas kudu diets showed the opposite trend. Data in b–d and f are 
mean ± s.e.m. ***P < 0.001; **P < 0.01; *P < 0.05; ∙P < 0.10; NS, P > 0.10.
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natural hazards in rewilding, which is advocated in part to buffer 
ecosystems against disturbance but will also be influenced by such 
disturbances1,42. Traits conferring fast population growth (small size) 
may accelerate restoration but at the cost of vulnerability to storms; 
conversely, very large megaherbivores such as elephants are integral 
to ecosystem function5 and relatively robust to floods (this study) but 
may be more sensitive to heatwaves35. Analysing impacts of extreme 
events as continuous functions of their intensity against the backdrop 
of shifting climatic baselines in ecosystems worldwide—rather than 
as isolated events at particular locations—is an important next step 
for the field8,9 and is increasingly feasible with globally distributed 
wildlife monitoring43,44.

As severe weather intensifies in concert with other threats to biodi-
versity, a better understanding of how perturbations affect population 
persistence and ecosystem integrity is a pressing goal1,43. By identifying 
correlates of robustness to cyclones among disproportionately threat-
ened megafauna5,45, our study contributes to ongoing discussions about 
potential adaptation measures and interventions to mitigate impacts 
on species of concern1. Proactively identifying vulnerable habitats and 
populations before extreme events occur will help managers devise 
and implement strategies—for example, driving animals away from 
at-risk areas before storms hit46,47 or providing supplemental food 
afterwards48,49—to reduce undesired ecological impacts of climatic 
volatility.
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Methods

Study system
Gorongosa National Park is located at the southern tip of the Great 
Rift Valley (−18.96° N, 34.36° E) approximately 100 km from the  
Mozambique Channel (Fig. 1a). The Great Rift Valley runs through the 
park and encompasses Lake Urema, a large (dry season extent ≈ 18 km2), 
shallow (dry season depth ≈ 1.5 m) waterbody fed by multiple rivers in 
the 9,300-km2 catchment29. Most rainfall (mean 850 mm, interquartile 
range 650–1,080 mm from 1957 to 2018) occurs during a wet season 
from November–April; then, Lake Urema expands, flooding up to 
780 km2 of the Rift floor29,30. Floodwaters recede as the dry season pro-
gresses (May–October), and Lake Urema persists as a perennial water 
source. Our study area lies south and west of Lake Urema, where vegeta-
tion structure and hydrology distinguish three habitat types: (1) flood-
plain grassland (8–20 m elevation), an annually flooded, productive 
zone of grasses and forbs that supports a large portion of Gorongosa’s 
wildlife; (2) floodplain–savanna transition (20–25 m elevation), which 
occasionally floods and features patchy stands of water-tolerant trees 
such as fever tree (Vachellia xanthophoea), white acacia (Faidherbia 
albida) and palms (Hyphaene spp.); and (3) savanna woodland (> 25 m 
elevation), which rarely floods and supports diverse tree species and 
a full continuum of canopy cover (Extended Data Fig. 1b–e)33,37,51–54.

Gorongosa historically supported big herds of large-bodied 
(>200-kg) grazers such as hippopotamus (Hippopotamus amphibius), 
buffalo (Syncerus caffer), wildebeest (Connochaetes taurinus) and 
zebra (Equus quagga), along with substantial populations of large 
carnivores, including lion (Panthera leo), leopard (Panthera pardus) 
and African wild dog (Lycaon pictus)28. During and after the 1977–1992  
Mozambican Civil War—when intense fighting occurred in Gorongosa—
all large-mammal populations declined by >90% and leopard and wild 
dog were extirpated28. By 2018, restoration efforts had helped to recover 
total herbivore biomass to >90% of pre-war estimates, including all of 
the ungulate species present in 1972. Lion abundance rebounded to at 
least 50% of the estimated historical population size of 200 by 2016 and 
has continued to increase, although the exact population size in 2019 is 
unknown28,55. A founding pack of 14 wild dogs was reintroduced in June 
2018, shortly before Cyclone Idai56; leopard and hyena were not rein-
troduced until 2020 and 2022, respectively. Gorongosa’s megafauna 
was thus largely intact in terms of species composition at the time of 
our study, but community structure was shifted relative to the pre-war 
baseline in favour of smaller species (≤200 kg). Waterbuck (Kobus ellip-
siprymnus), reedbuck (Redunca arundinum), warthog (Phacochoerus 
africanus), impala (Aepyceros melampus) and oribi (Ourebia ourebi) 
collectively accounted for 67% of biomass in 2018, whereas the formerly 
dominant large-bodied species remained rare28.

From 1980 to 2007, an average of 1.2 cyclones per year made landfall 
in Mozambique57,58. However, Idai (a category 4-equivalent intense 
tropical cyclone), which made landfall at the port city of Beira on 15 
March 2019, is by some measures the worst cyclone on record in the 
Southern hemisphere26,27. Idai caused widespread damage throughout 
Mozambique, Zimbabwe and Malawi, resulting in more than US$3.2 bil-
lion in damage and more than 1,600 deaths26,59. In Gorongosa, >200 mm 
of rain fell in 24 h (nearly a quarter of the annual mean), and estimated 
sustained winds in the park exceeded 93 km h−1 (ref. 50).

We integrated data from multiple, concurrent research projects to 
capture individual and population-level responses of the two extant 
large carnivores (lion and wild dog)55,56 and the 13 most abundant 
(>500 counted in 2018) large-herbivore species28: elephant (Loxodonta  
africana), buffalo, sable (Hippotragus niger), wildebeest, waterbuck, 
kudu (Tragelaphus strepsiceros), hartebeest (Alcelaphus buselaphus), 
nyala (Tragelaphus angasii), warthog, reedbuck, impala, bushbuck 
(Tragelaphus sylvaticus) and oribi. Six herbivore species were not 
included because they were too scarce (<200 counted in 2018: zebra, 
eland, bushpig, and grey and red duiker) and/or limited to a narrow  

range of habitats outside our core study area (hippopotamus and  
duikers). The study species span two orders of magnitude in body 
mass60 and a range of habitat associations (Extended Data Fig. 1):  
herbivore floodplain affiliation ranged 12–81%, quantified as the mean 
proportion of individuals occurring in treeless floodplain grassland37,54 
during biennial wildlife counts from 2014–2018 (see ‘Aerial wildlife 
surveys’). Data were not available for all species in every analysis.  
Movement data were available for elephant, sable, kudu, nyala, bush-
buck, lion and wild dog; camera traps produced adequate sample sizes 
for waterbuck, nyala, warthog, impala and bushbuck; and nutritional 
condition data were available for kudu, nyala and bushbuck. Diet and 
abundance data were available for all species.

Quantifying flood depth and extent
We tracked flood depth throughout the park’s road network before 
and after Cyclone Idai using loggers deployed in 2018. From August to 
November 2018, we installed 46 automated water-level loggers (HOBO 
U20L-01, Onset) in a regular grid with 1.8-km spacing between locations, 
covering a 120-km2 minimum convex polygon. An additional logger 
was deployed indoors at the park’s research headquarters to record 
atmospheric pressure, which we later used to correct raw pressure 
readings from the other sensors (that is, to obtain pressure of water 
independent of air pressure).

All sensors were set to record water levels every 4 h and were deployed 
inside slotted PVC pipes set vertically into the ground and capped with 
PVC to reduce disturbance by wildlife; pipes were tied with stainless 
steel to metal stakes driven 60–100 cm into the ground. We measured 
depth from ground level to the bottom of each hole in which sensors 
were deployed.

From June to September 2019, as floodwaters receded and sites 
became accessible, we retrieved logger data. Of 46 loggers deployed, 
37 had intact data that were included in our analyses. We truncated 
data from 16 November 2018 at 04:00 to 21 June 2019 at 08:00. For 
each sensor, we subtracted atmospheric pressure from raw recorded 
pressure to obtain water pressure. This enabled us to calculate water 
depths at each location using HOBOWare and its Barometric Compensa-
tion Assistant tool. We further corrected each estimate by subtracting 
the hole depth for each sensor to obtain depth above ground level.

We used an inverse distance weighting function to interpolate water 
depth (30-m resolution) from the corrected measurements across the 
minimum convex polygon encompassing all 46 original loggers, plus 
a 1-km buffer. We interpolated water depths in R using function idw in 
the package gstat61,62. In the absence of extensive validation data (for 
example, manually measured depths), we considered it best to use a 
relatively simple interpolation method as opposed to, for example, 
kriging. We used a high power (p = 7) to weight interpolated water levels 
toward values at the nearest measured water depth, because all else 
equal, closer locations should have more similar water depths. When 
we tested the interpolation using lower powers (p = 3 and p = 5), the 
influence of distant sensors led to unrealistic spotting patterns.

The flood sensor network did not fully overlap the extent of GPS 
collar data. Accordingly, for analyses of behavioural responses to the 
flood edge, we used publicly available geospatial data on flooding after 
Cyclone Idai from the UN Operational Satellite Applications Programme 
(surface waters in the central provinces of Mozambique, at 10-m resolu-
tion, derived from Sentinel-1 imagery acquired 13–26 March 2019)63.

NDVI analysis
To evaluate how the increased extent and duration of flooding after 
Cyclone Idai impacted vegetation productivity, and hence availability 
of green forage for herbivores, we compared trends in mean monthly 
normalized difference vegetation index (NDVI) from 2019 with those 
from 20 bracketing years (2000–2018 and 2020). NDVI measures green-
ness; low values (approaching 0) indicate low aboveground primary 
productivity, high values (approaching 1) indicate high productivity64. 



Article
We analysed how NDVI in 2019 differed from other years both within the 
area of cyclone-induced flooding inferred from the local flood sensor 
data and within a more-encompassing 748-km2 polygon defined by 
the movements of GPS-collared antelopes in 2014–2019 that included 
adjacent higher-elevation savanna woodland habitat34.

We calculated NDVI from MODIS data downloaded using the 
MODIStsp package65 in R and extracted monthly 1-km vegetation index 
products (MOD13A and MYD13A3) with NDVI, quality, usefulness, and 
land/water bands from February 2000 to December 2020 (MYD13A3 
products are available only from July 2002). We restricted spatial extent 
to the two focal areas described above. We retained only pixels with 
quality labels of 0 or 1 (unobscured pixels), usefulness labels of <3 
(highest quality) and land labels of 1 (pixel values did not represent 
water); other pixels were assigned ‘NA’. To generate one NDVI estimate 
per pixel per month, we averaged values from MOD13A and MYD13A3 
when both were available. For each focal area, we calculated mean 
monthly NDVI across pixels. We compared NDVI in each month of 2019 
to the inter-annual mean and standard deviation from 2000–2018 and 
2020 (Fig. 3) by computing the anomaly (Z score) for each month; |Z| > 2 
indicates that NDVI in 2019 was >2 s.d. from the long-term mean and 
is a common threshold used for inferring statistical significance66.

Animal movement analysis
We used data from GPS-collared bushbuck (n = 8), nyala (n = 4), kudu 
(n = 12), sable (n = 3), elephant (n = 13), wild dog (n = 1 pack) and lion 
(n = 8) collected as part of long-term studies34,54–56,67–69. In the lone pack 
of wild dogs, the dominant female was fitted with a GPS collar; because 
wild dogs are an obligately social species that live and hunt communally 
and there were no other packs in the park during our study, we consid-
ered the movement data from this female to represent the entire wild 
dog population in Gorongosa56. We limited herbivore and lion GPS data 
to individuals in separate herds or prides, to ensure that movements 
were independent. For all species, GPS collars were deployed only on 
animals judged to be full-grown adults based on body size, pelage, 
horn growth and/or tooth wear. We measured body weights of bush-
buck and female nyala by weighing them during immobilization for 
collaring. Male nyala, along with kudu and sable of both sexes, are too 
large to easily weigh in the field; we used chest girth measurements for 
these individuals to estimate body mass based on regressions devel-
oped for antelopes in Gorongosa34. Chest girth was not measured for 
elephant; we thus assumed all individual weights to be the average of 
sex-specific adult body mass estimates60 (as we did for all non-collared 
species; Extended Data Fig. 1). Animal-handling procedures followed 
guidelines established by the American Society of Mammalogists70. 
Bushbuck, nyala and kudu protocols were approved by Animal Care 
and Use Committees at the University of Idaho (2019-32) and Princeton 
University (2075F-16). Sable protocols were approved by the animal 
ethics committee at the University of Witwatersrand (2013/47/2 A). 
Elephant protocols were approved by the Animal Care and Use Com-
mittee at the University of Idaho (2015-39) and Gorongosa National 
Park’s Conservation Department. Lion and wild dog protocols were 
approved by the Gorongosa Conservation Department.

We evaluated how distance to floodwaters, elevation, and proximity 
to termite mounds influenced movements of GPS-collared animals 
during the first two weeks after the onset of flooding (that is, 04:00 
15 March 2019, the hour at which >10% of flood sensors detected an 
increase in depth) using step-selection functions (SSFs71,72). Mounds 
created by fungus-farming Macrotermes spp.—substantial hills that can 
grow to >5 m tall and >20 m diameter—are ubiquitous in the wooded 
portions of our study area and are selected by browsing antelopes 
owing to their dense and nutrient-rich woody plants34,73. To test our 
predictions that animals would avoid the flood edge and move to high 
ground at both coarse and fine spatial grains (higher-elevation areas 
and termite mounds within those areas), we fit separate SSFs for each 
species for two-week intervals before (04:00 1 March to 04:00 15 March 

2019) and after (04:00 15 March to 04:00 29 March 2019) Idai. We paired 
each observed time step (segments linking consecutive relocations, 
which occurred at 1-h intervals for bushbuck, nyala, kudu and elephant; 
3-h intervals for lion and wild dog; and 8-h intervals for sable) with 10 
random steps drawn from the distribution of step lengths and turn-
ing angles observed for each individual. For each ‘used’ (actual) and 
‘available’ (random) step, we extracted: (1) distance to flood edge (m) 
estimated from satellite-derived shapefiles63; (2) elevation (m above 
sea level) from a LiDAR digital terrain model (0.5 m horizontal, 0.1 m 
vertical resolution; details in ref. 34); and (3) presence or absence of 
a termite mound (manually digitized in a hillshade rendering of the 
LiDAR-derived digital terrain model and buffered by 10 m to account 
for error in GPS collar fixes34). We limited observed and random steps 
to the extent of the LiDAR-derived products from which we extracted 
environmental covariates; one collared kudu was excluded from SSF 
analysis because its home range did not overlap the environmental 
covariates. Only two of the eight lion GPS collars collected data at suf-
ficiently regular intervals in the weeks before and after Idai to be valid 
for SSF analysis. We standardized all predictor variables by subtracting 
the mean from each observation and dividing by the s.d. We compared 
standardized environmental covariate values between used and availa-
ble steps in each time interval, clustered by individual, using conditional 
logistic regression in the survival package in R72,74,75. We considered 
differences in selection between ‘before’ and ‘after’ cyclone windows 
to be statistically significant when the 95% confidence intervals around 
their coefficients did not overlap. Inferences about cyclone impacts on 
movement are based on within-species comparisons of selection before 
versus after Idai landfall, because differing fix rates limit comparability 
of movement behaviour among species.

To assess whether the three bushbuck that died within a week of 
landfall exhibited different patterns of habitat selection than the five 
that survived until their collars were remotely released in May 2019, 
we filtered GPS data to include only the week before (04:00 8 March 
to 04:00 15 March 2019) and after landfall (04:00 15 March to 04:00 22 
March 2019). We fit separate SSFs to the data from each period for the 
group that survived and the group that died (Extended Data Fig. 3c). SSF 
fitting procedures and statistical inference were as described above.

To evaluate the extent to which collared individuals were displaced 
from their prior ranges by Cyclone Idai, we partitioned individuals’ GPS 
locations into temporal bins spanning: (1) the week before the cyclone 
(04:00 8 March to 04:00 15 March 2019); and (2) 6 weekly bins after 
flooding began. We then calculated: (1) distance between the centroid 
of movement (geographic mean of GPS fixes) in the week before Idai 
and the centroids of movement in each week thereafter; and (2) pro-
portional overlap between the individual’s range in the week before 
Idai (derived from 95% utilization distributions via autocorrelated 
kernel density estimation) and each weekly range in the 6 weeks after-
wards. We calculated autocorrelated kernel density estimates for each 
partitioned dataset conditional on the continuous-time movement 
model that best fit the data (Brownian motion, Orstein–Uhlenbeck 
process, or Orstein–Uhlenbeck foraging process), using model selec-
tion based on the Akaike information criterion (AICc) (fit_ctmm and 
hr_adke in the amt package76–78). To test if post-cyclone displacement 
differed from normal patterns, we compared GPS data from representa-
tive non-cyclone time periods partitioned into a week-long ‘before’ 
range (04:00 25 January to 04:00 1 February 2019) with 6 weekly ‘after’ 
ranges (Fig. 2b and Extended Data Figs. 4a and 6b). We used Welch’s 
two-sample t-tests to compare displacement for each species between 
the before-cyclone and each after-cyclone period. We assessed sensitiv-
ity of our results to the temporal partitioning of GPS data by rerunning 
analyses for bushbuck (the species with the greatest post-cyclone dis-
placement and the most pre-cyclone GPS data) with different specifica-
tions, which indicated that our inferences about displacement were 
robust to duration of the ‘before’ interval (1 week to 3 months) and 
choice of the period used to define ‘typical’ movement (earlier in 2019 



versus the same time of year in 2015 and 2020) (Welch’s two-sample 
t-test: all t > −3.2, all P < 0.02).

We tested the roles of body size (log-transformed to meet model 
assumptions) and habitat affiliation (Extended Data Fig. 1a) in pre-
dicting displacement using generalized linear mixed-effects models 
(GLMMs) with a beta error distribution (for proportional response 
variables bounded by 0 and 1) and per-species random intercepts 
(Extended Data Fig. 4b). We fit GLMMs in glmmTMB79 and inspected 
residuals using simulateResiduals() in DHARMa80, finding no evidence 
that model assumptions were violated.

Camera-trap analysis
To evaluate cyclone effects on herbivore spatiotemporal distribution, 
we used data from a camera-trap grid established in 201631. Cameras 
(Bushnell TrophyCam) were deployed over a 300-km2 area south of Lake 
Urema, centred within 5-km2 hexagonal cells (each camera ~2.4 km from 
6 nearest neighbours)31. Of 48 cameras deployed at the time of landfall, 
30 survived (Fig. 2c). We limited analyses to data from these 30 cameras 
in all years (2017, 2018 and 2019) to avoid biases arising from unbalanced 
sampling among cameras/years. We thinned data to >15 min between 
records to minimize bias arising from successive sightings of the same 
individuals31. We summed remaining detections into month-long bins 
from 15 March to 15 October in each year. Five species—waterbuck, 
nyala, warthog, impala, and bushbuck—had enough data for statistical 
analysis (n > 10 per monthly bin after 15 March in each year).

For each species, we fit a GLMM with negative-binomial distribu-
tion to model number of detections per month at each camera, offset 
by the log-transformed number of days per month each camera was 
active (to account for search effort) and the total number of detec-
tions across the grid per month (to account for variable abundance 
among years). This analysis tested for differences in spatiotemporal 
distribution between cyclone and non-cyclone years (a categorical 
main effect) and whether such differences were modulated by the 
continuous variables of months since landfall and distance from Lake 
Urema (cyclone × month, cyclone × lake, and cyclone × lake × month 
interactions). Negative three-way interaction terms indicated that 
herbivore activity was lower at locations closer to the lake after Idai 
than in normal years, and that this effect varied with time since land-
fall (Extended Data Table 1). We included camera and year as random 
intercepts to account for unmeasured variation among camera loca-
tions and between non-cyclone years. All analyses used glmmTMB and 
DHARMa as described above.

Carnivore diets
We partitioned previously published observations56 of lion and wild 
dog kills in Gorongosa from 2017–2020 into three periods—before 
cyclone, 1–3 months after landfall, and 4–9 months after landfall—to 
explore changes in prey composition (Extended Data Fig. 8c). We used 
DNA metabarcoding of wild dog scats to cross-check cyclone-induced 
dietary shifts suggested by the kill data (Extended Data Fig. 8d,e). Scats 
were collected opportunistically between June 2018 and December 
2019 (n = 102). Details of DNA extraction, amplification and sequencing 
are in Supplementary Methods. In brief, DNA was extracted in batches 
of 29 samples and 1 negative control (750 μl DNA lysis buffer). Extracted 
DNA from wild dog scats was loaded onto two 96-well plates for ampli-
fication. We used established primers targeting the mitochondrial 16S 
gene to amplify mammalian DNA81. We pooled PCR products by plate 
and purified them with a Qiagen MinElute PCR Purification kit. Purified 
PCR products were submitted for sequencing as equimolar libraries to 
the genomics core facility at Princeton University, where Illumina tags 
were appended with a low-cycle PCR approach and libraries sequenced 
in paired-end (2× 150 bp) on a NovaSeq SP 300-nt platform.

Sequence data were curated and filtered using OBITools82. The fil-
tered dataset comprised 87 wild dog samples and 17 prey sequences. 
To make samples comparable, we rarefied them to 1,000 reads, iterated 

1,000 times, and used the mean relative read abundance (RRA) of prey 
sequences across the ensemble to represent each sample’s composi-
tion. To avoid pseudoreplication, we combined samples collected on 
the same date, as multiple scats were often collected from the same 
locale on the same day. We averaged the composition of these sam-
ples, yielding n = 42, which we split into three periods: before cyclone 
(24 June to 5 December 2018, n = 23); 1 to 3 months after landfall  
(7 April to 9 June 2019, n = 5); and 4 to 9 months after landfall (16 July 
to 14 December 2019, n = 14). We tested for an overall compositional 
difference among these periods and between each pair of periods sepa-
rately using adonis2 in vegan83. We visualized results using non-metric 
multidimensional scaling of Bray–Curtis dissimilarities (metaMDS in 
vegan). One outlier (96% of RRA identified as civet (Civetticis civetta)) 
was excluded from analysis because it may have been civet faeces mis-
takenly labelled as wild dog scat. Adjusting the post-cyclone temporal 
binning to balance sample sizes (that is, 7 April to 30 July 2019, n = 9; 
3 August to 14 December 2019, n = 10) did not qualitatively alter the 
results. Accordingly, we present data from the June–July split that dis-
tinguishes the earliest post-cyclone period and corresponds with a 
natural break in sampling.

Herbivore diet composition
We used DNA metabarcoding to characterize herbivore diets, follow-
ing protocols from our prior work in Gorongosa32–34,37,51,53,54,69,84 and 
largely as described above for carnivores; details and subtle differ-
ences between carnivore and herbivore pipelines are in Supplementary 
Methods. We analysed samples collected before (2016 and 2018) and 
after (2019) the cyclone in three seasons: late wet season (April–May), 
early dry season ( June–July, 2016 only), and late dry season (October– 
November). Raw data are on Dryad Digital Archive (2016, https://doi.
org/10.5061/dryad.63tj806; 2018, https://doi.org/10.5061/dryad.
sxksn02zc; and 2019, https://doi.org/10.5061/dryad.7wm37pvzv). 
The dataset comprised 13 herbivore species, 1,470 samples, and 332 
plant molecular operational taxonomic units (mOTUs; Supplementary 
Table 1).

To evaluate cyclone impacts on herbivore diet composition rela-
tive to non-cyclone years, we calculated, for each species and season, 
Bray–Curtis dissimilarity between each pair of faecal samples from 2016 
and 2018 (non-cyclone) and 2019 (cyclone). We visualized differences 
between years (within seasons) using non-metric multidimensional 
scaling and tested for significant differences using permutational mul-
tivariate analysis of variance (perMANOVA; Extended Data Fig. 5). We 
plotted data from 2016 and 2018 separately for visualization but lumped 
them into a ‘non-cyclone’ category for perMANOVA.

To test whether Cyclone Idai influenced temporal dietary turnover 
between seasons, we computed first the population-level average diet 
of each species (mean RRA of each mOTU across samples) and then 
Bray–Curtis dissimilarity (vegdist in vegan) between late dry season 
2018 and late wet season 2019 (the sampling periods immediately 
before and after Idai). We compared that value with those obtained 
for all other pairs of seasons (both consecutive and non-consecutive) 
in non-cyclone years (early dry 2016; late wet, early dry and late dry 
2018). We were unable to include bushbuck and hartebeest in this 
analysis owing to low sample sizes in the 2019 wet season. To mini-
mize sample-size imbalance among seasons and species (mean 16.9, 
minimum 6, maximum 40), we randomly rarefied species’ samples 
from a given season and year to n = 8 (when n > 8) and calculated aver-
age population-level diets and dissimilarity based on this subset. We 
repeated this process 1,000 times and used the mean value for analysis. 
We tested whether dissimilarity across the cyclone-affected period was 
greater than usual using GLMM with beta error distribution, fixed effect 
of cyclone occurrence, and random intercepts for herbivore species. 
The inclusion of non-consecutive seasons or years in the baseline for 
this comparison constitutes a liberal definition of ‘normal’ seasonal dis-
similarity, and a conservative test of cyclone-induced dietary anomaly, 
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because the baseline includes dissimilarity between disparate seasons 
or years (for example, dry season 2016 versus wet season 2018).

Herbivore dietary attributes
We quantified diet breadth as the number of plant families per faecal 
sample (to avoid potentially confounding effects of variation in taxo-
nomic resolution of mOTUs and in sample size per species on richness 
estimates) in each season (data were available for all seasons in 2018 and 
2019, and for the early dry season only in 2016). For each season, we used 
Poisson GLMMs with fixed categorical effects of year and per-species 
random intercepts to test if diet breadth was significantly different in 
the cyclone year, 2019.

To test whether proportional consumption of grasses (RRA of 
Poaceae mOTUs) shifted in response to cyclone-induced shifts in 
understory productivity (Fig. 2 and Extended Data Fig. 6a), we used 
beta GLMMs for each season with fixed categorical effects of year and 
per-species random intercepts. We modelled mean grass RRA per spe-
cies rather than per sample to avoid an inordinately large number of 
zeroes, and we used zero-inflation terms for the dry season models to 
satisfy model assumptions.

We analysed forage traits using a locally collected plant trait database 
and published protocols32. We focused on six plant traits associated 
with forage quality and/or hypothesized sensitivity to flooding: mean 
field-measured height of the plant species (short-statured plants should 
be more depleted by flooding), foliar digestible protein content (a chief 
and often limiting macronutrient for herbivores), dry matter digest-
ibility (a key component of diet quality that influences the amount of 
nutrients animals can extract), lignin (an indigestible component of 
cell walls that is most abundant in woody plants), phosphorus (a major 
mineral nutrient), and sodium (a potentially limiting micronutrient). 
Following ref. 32, we discarded dietary mOTUs that did not match plant 
taxa in the traits dataset and then recomputed RRA for each sample; 
we further discarded samples with <60% of original reads remaining 
after removal of unmatched mOTUs (1,360 of 1,470 samples retained; 
median reads preserved = 98.1%). We then multiplied the RRA of each 
mOTU by its trait value to obtain a weighted estimate of each trait in 
each sample. We tested for differences in these attributes (per sample) 
using linear mixed-effects models for each season with fixed categori-
cal effects of year and per-species random intercepts; to satisfy model 
assumptions, plant height was log-transformed, protein was recipro-
cally transformed, and the other metrics (expressed as proportions) 
were logit-transformed.

To evaluate interspecific differentiation (dietary niche partition-
ing), we conducted perMANOVA of dietary dissimilarity between each 
pair of species in each season and year and used the R2 statistic as 
an index of the strength of niche differentiation33 (higher R2 values 
indicate that herbivore species identity explains a larger proportion 
of variance in dietary dissimilarity). Because perMANOVA is sensitive 
to sample size, which differed among sampling periods, we randomly 
rarefied species’ samples to n = 8, iterated 1,000 times, and used the 
mean R2 value in analyses. We analysed R2 values using beta GLMMs 
for each season with fixed categorical effects of year and per-species 
random intercepts.

To test whether herbivore traits mediated cyclone-induced dietary 
shifts, we focused on three metrics that collectively represent diet 
composition (between-season turnover), breadth (family-level rich-
ness), and quality (digestibility). For breadth and quality, we fit mod-
els for each season that included interactive effects of year (cyclone 
occurrence) and each trait (body mass or habitat affiliation) and report 
effects of the cyclone×trait interactions; for turnover, the response 
variable (Z scores of dissimilarity for each species between pre- and 
post-cyclone seasons and all other season pairs) inherently accounted 
for cyclone occurrence, so models included only the main effect of 
each trait. Specific fitting procedures and results are in Extended Data 
Table 2.

Nutritional condition
Nutritional condition reflects endogenous energy reserves available for 
maintenance, growth, and reproduction and is a key correlate of fitness 
in ungulates, influencing survivorship, pregnancy rates, offspring size, 
and vulnerability to predation85. We compared mean nutritional condi-
tion of bushbuck (n = 14), nyala (n = 7), and kudu (n = 12) three months 
after landfall ( June–July 2019) with measurements from previous years 
( June–July 2014, 2015, 2016 and 2018; bushbuck n = 11, 11, 7 and 13; nyala 
n = 10, 6, 0 and 4; and kudu n = 12, 9, 0 and 18, respectively). Nutritional 
condition data were collected while animals were immobilized for GPS 
collaring. We recorded body dimensions (body and hind foot lengths, 
chest girth), used ultrasound to measure maximum rump-fat depth 
and thickness of the biceps femoris and longissimus dorsi muscles, and 
conducted standardized palpation scoring at the sacrosciatic ligament, 
lumbar vertebrae, sacrum, base of tail, and caudal vertebrae (based on 
protocols developed for North American ungulates86). Because equa-
tions for converting these measurements into estimates of ingesta-free 
body fat have not been validated for African ungulates, we followed an 
approach that we have previously used for Gorongosa antelopes34,54,84 
to develop an index of relative nutritional condition using principal 
component analysis (Supplementary Table 3). Metrics associated with 
body size (for example, muscle thicknesses, body length) loaded most 
strongly onto PC1, whereas those associated with body fat (for example, 
palpation scores, maximum fat depth) loaded most strongly onto PC2 
(Supplementary Table 4). Thus, we used PC2 as an index of nutritional 
condition (that is, endogenous fat reserves) and report the inverse of 
PC2 such that larger values equate to more available fat34,54,84. We used 
Welch’s two-sample t-test (Fig. 4e) to test for differences in condition in 
each species before Idai (2014–2016 and 2018) versus after Idai (2019); 
note that because we do not recapture collared animals, these analyses 
reflect mean population-level differences across years rather than 
individual-level changes through time.

Aerial wildlife surveys
Gorongosa conducts biennial aerial wildlife counts28. We used data 
from 2014, 2016, 2018 and 2020 (in which total counts were conducted 
within a standardized 193,500-ha block at the core of the park using 
consistent methodology) to evaluate population trends before versus 
after Idai. Detailed methods for each count are in refs. 28,87. All counts 
were conducted in the late dry season (October–November, to enhance 
visibility) by the same pilot (M. Pingo, Sunrise Aviation) with three 
experienced observers (always including M.E.S.) in a Bell JetRanger 
helicopter with all four doors removed. Surveys were conducted at a 
constant height (50–55 m above the ground) at 96 km h−1 along parallel, 
500-m wide transects. All animals within 250 m on either side of the 
centre line were individually counted and their locations recorded using 
GPS. Large herds were circled for accurate counting; when necessary, 
photographs were used to enumerate individuals. These total counts 
should be viewed as minimum estimates of species’ true abundance. 
A carcass count on 14 November 2020 using the same survey methods 
along a dedicated 250-km transect (6.5% of the count block) revealed 
367 dead waterbuck, which was extrapolated to the scale of the count 
block based on the distribution of carcass density across floodplain 
and woodland habitats87.

We used count data from 2014–2018 to quantify study species’ habitat 
affiliation under non-cyclone conditions. Following ref. 54, we quanti-
fied the mean proportion of individuals of each species in floodplain 
grassland habitat (the treeless area around Lake Urema, as delineated 
by a pre-existing habitat classification52) across survey years. We tested 
whether floodplain affiliation was correlated with body mass using 
Pearson’s product-moment correlation coefficient.

We tested whether proportional changes in abundance before versus 
after Idai [(N2020 – N2018)/N2018] differed from that observed between 
consecutive pairs of non-cyclone years (2014–2016, 2016–2018) by 



fitting a linear mixed-effects model with Gaussian error distribution, 
a categorical variable for cyclone incidence as the fixed effect, and 
per-species random intercepts using glmmTMB. We inspected residu-
als using simulateResiduals() in DHARMa, yielding no evidence that 
assumptions were violated. We evaluated whether herbivore species’ 
body mass, habitat affiliation, or diet (mean grass RRA in early dry 
seasons of 2016 and 2018) predicted population growth/decline before 
versus after Idai using linear regression. We used AICc for model selec-
tion among 16 candidate models, which comprised all combinations 
of main effects and first-order interactions of the three predictors 
(Supplementary Table 2).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Data used in this study are available on Dryad: https://doi.org/10.5061/
dryad.63tj806; https://doi.org/10.5061/dryad.sxksn02zc and https://
doi.org/10.5061/dryad.7wm37pvzv. Source data are provided with 
this paper.

Code availability
Code used in our analyses is available on Dryad: https://doi.org/10.5061/
dryad.7wm37pvzv.
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Extended Data Fig. 1 | Herbivore body size and habitat affiliation in 
Gorongosa. (a) The 13 herbivore species in this study spanned a broad 
spectrum of body sizes and habitat affiliations. Body mass estimates used in 
this study are the average of sex-specific adult values from ref. 60. Floodplain 
affiliation is the mean proportion of individuals of each species occurring in 
floodplain-grassland habitat (b,c) during aerial wildlife counts (2014–2018). 

Body mass and floodplain affiliation were uncorrelated (r = −0.34, df = 11, 
P = 0.26). (b) Map of study area, showing habitat types and geographic features. 
c–e, Representative photos of floodplain (c, 8–20 m above sea level); floodplain- 
savanna transition (d, 20–25 m above sea level); and savanna woodland  
(e, >25 m above sea level).



Extended Data Fig. 2 | Rainfall from Cyclone Idai caused extreme and 
unseasonal flooding. (a) Bold yellow line shows monthly rainfall in the year  
of Cyclone Idai (2019); thin purple lines show monthly rainfall in other years 
(2011–2018, 2020); bold purple line shows mean monthly rainfall across those 
years. March of 2019 was roughly fivefold wetter (688 mm) than a typical March 
(130 mm), and 2019 had roughly twice as much rain (1874 mm) as the long-term 
annual average (850 mm). (b) Floodwaters extended farther (visualized in 
relation to the road network, red lines) and persisted longer (color scale) in 
2019 (top maps) than in 2020 (also a wetter than average year, 1037 mm; bottom 

maps). Stars mark the location of Lion House, a local landmark. (c) Lion House 
before Idai (early March 2019) when the seasonal flood waters had largely 
receded in the surrounding floodplain. This photo was taken via drone by the 
Gorongosa Restoration Project. (d) Lion House was submerged by flood waters 
following Idai, with only the roof remaining above water (photo date: 22 March 
2019). This picture was taken from a helicopter during post-Idai humanitarian 
aid efforts by the Gorongosa Restoration Project. Over two days (15–17 March 
2019; e-h), flooding induced by Cyclone Idai rose by more than 3 m adjacent to 
Lion House and persisted for 2 months (i,j). Photos courtesy of Piotr Naskrecki.
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Extended Data Fig. 3 | Body sizes and movement behaviors of bushbuck 
that died (n = 3) and survived (n = 5) Cyclone Idai. a–b, The three bushbuck 
that died in the flood were smaller than the survivors (a) and included the two 
smallest of five adult females and the single smallest of three adult males (b). 
Boxplots show median and interquartile range; whiskers show minimum and 
maximum. (c) Coefficients ± 95% confidence intervals (CIs) from step-selection 
functions (SSFs) that quantified selection for elevation, termite mounds, and 
distance to floodwaters in the week before (purple) and after (yellow) Idai. 

Positive coefficients indicate selection and negative coefficients indicate 
avoidance; CIs not overlapping zero indicate significant selection or avoidance;  
CIs not overlapping each other indicate significant differences before vs. after 
landfall. Although bushbuck killed by Cyclone Idai significantly increased  
their selection for higher elevations and mounds (non-overlapping CIs for all 
coefficients before vs. after landfall), they were unable to avoid the flood edge 
(indicated by positive coefficients) and died in water >1.5-m deep.



Extended Data Fig. 4 | Herbivore traits predicted degree of displacement 
after Idai. (a) This analysis parallels and complements Fig. 2b, which shows 
displacement from ranges based on overlap of utilization distributions via  
95% autocorrelated kernel density estimation. Thin lines show individual 
movements; thick lines show the mean across individuals (purple, pre-cyclone; 
yellow, post-cyclone). Within a week of landfall, bushbuck (2019: n = 8) moved 
many-fold farther from their prior week-long range centroids than expected 
based on pre-cyclone behavior (Welch’s two sample t-test: X = 0.95cyclone , 
X = 0.08no cyclone , t = 3.01, P = 0.02); this effect intensified over the next week 
(X = 2.67cyclone , X = 0.08no cyclone , t = 5.62, P < 0.001) and then persisted over the 
next month. Some individuals of other herbivore species exhibited similarly 
anomalous displacement from their prior week-long range centroids after the 
cyclone (compare thin lines), but these trends were not pronounced at the 

population level (all P > 0.05). (b) Affiliation with low-elevation floodplain 
habitat (quantified at the species level; see Extended Data Fig. 1) strongly 
predicted the magnitude of individuals’ displacement in the week after  
Idai (i.e., lower overlap with prior home ranges, estimated as utilization 
distributions via autocorrelated kernel density estimation; mixed-effects 
model with beta error distribution, fixed effects of floodplain affiliation  
and log-transformed body mass, and per-species random intercepts: 
βfloodplain = −5.44 ± 1.65 s.e., P = 0.001). Small size (measured or estimated at the 
individual level for all species except elephant; see Methods) was also 
associated with greater displacement after accounting for effects of habitat 
affiliation (βlog(mass) = 0.53 ± 0.25 s.e., P = 0.03). Model-predicted effects (black 
line with shaded 95% CI) show strength and direction of each relationship.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Herbivore diet composition differed after Cyclone 
Idai (2019) relative to non-cyclone years (2018, 2016). a–c, Nonmetric 
multidimensional scaling (NMDS) ordinations of Bray-Curtis dietary dissimilarity  
based on fecal DNA metabarcoding for each species in each season. Each point 
corresponds to an individual fecal sample, and distance between points reflects  
degree of dissimilarity; ellipses show 95% CI derived from the multivariate  
t-distribution and represent diet composition and breadth for each species in 
the late-wet season (a), early-dry season (b), and late-dry season (c). Sample 
sizes are in Supplementary Table 1. 2016 data were available only for the early-
dry season (b), and bushbuck and hartebeest are omitted from the wet season 

plots (a) owing to insufficient sample sizes. P-values above each ordination plot 
are from pairwise permutational analyses of variance (perMANOVA) between 
cyclone and non-cyclone periods for each species in each season (for the early-
dry season, 2016 and 2018 data are plotted separately but lumped as one ‘non-
cyclone’ group for perMANOVA). The perMANOVA for buffalo in the early-dry 
season failed to converge; all but 5 of the remaining 36 tests indicated statistically  
significant (P ≤ 0.05) dietary differences between cyclone and non-cyclone 
periods; the only exceptions were kudu in the late-wet and early-dry seasons, 
waterbuck in the early- and late-dry seasons, and reedbuck in the late-dry season.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Herbivore diet metrics after Idai (2019) relative to 
non-cyclone years (2016, 2018). Points and error bars show mean ± s.e.m; 
sample sizes are in Supplementary Table 1. Asterisks show statistical significance  
level, as per legend key at the bottom. (a) Relative read abundance (RRA) of 
grasses in the diet of each species (from left to right in decreasing order of 
grass consumption). Grass RRA was significantly lower in all seasons after 
Cyclone Idai than in 2018 (a wetter than average year), but not relative to the 
2016 early-dry season (a drier than average year) (beta generalized linear 
mixed-effects models, with fixed effect of year and per-species random 
intercepts: wet, β2018 = 0.73 ± 0.12 s.e., P < 0.001; early-dry, β2016 = 0.12 ± 0.21, 
P = 0.56 and β2018 = 0.57 ± 0.23, P = 0.01; late-dry, β2018 = 0.46 ± 0.19, P = 0.02).  
(b) Family-level dietary richness was greater in all seasons after Idai than in 
previous years (Poisson mixed-effects model, per-species random intercepts: 
late-wet, β2018 = −0.29 ± 0.04 s.e., P < 0.001; early-dry, β2016 = −0.09 ± 0.04, 
P = 0.02 and β2018 = −0.06 ± 0.04, P = 0.09; late-dry, β2018 = −0.17 ± 0.04, 
P < 0.001). c–e, We fit separate linear mixed-effects models with per-species 

random intercepts for measures of diet quality in each season. (c) Digestibility 
was non-significantly lower after Idai in the late-wet (β2018 = 0.01 ± 0.02, P = 0.49)  
and early-dry seasons (β2016 = 0.03 ± 0.02 s.e., P = 0.14 and β2018 = 0.03 ± 0.02 s.e., 
P = 0.15); although digestibility was higher on average in the late-dry season 
(β2018 = −0.05, SE = 0.02, P = 0.05), this trend conceals strong interactions 
between the cyclone and herbivore traits, with small-bodied and floodplain-
affiliated species having less digestible diets after Idai than in 2018 (see Extended  
Data Table 2). (d) Lignin content was elevated throughout the year after Idai 
(late-wet, β2018 = −0.10 ± 0.04, P = 0.01; early-dry, β2016 = −0.05 ± 0.03, P = 0.15 
and β2018 = −0.12 ± 0.03, P < 0.001; late-dry, β2018 = −0.14 ± 0.04, P < 0.001).  
(e) Phosphorus content was lower after Idai in all seasons (late-wet, 
β2018 = 0.07 ± 0.03, P = 0.005; early-dry, β2016 = 0.04 ± 0.03, P = 0.12 and 
β2018 = 0.16 ± 0.03, P < 0.001; late-dry, β2018 = 0.07 ± 0.03, P = 0.02). (f) Sodium 
content was lower after Idai in the late-wet (β2018 = 0.25 ± 0.06, P < 0.001) and 
early-dry seasons (β2016 = 0.21 ± 0.06, P = 0.001 and β2018 = 0.34 ± 0.06, P < 0.001) 
but rebounded by the late-dry season (β2018 = −0.11 ± 0.07, P = 0.10).
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Extended Data Fig. 7 | Large-mammal abundance in the years before and 
after Idai. Data are from biennial helicopter-based wildlife surveys, except for 
wild dog for which we used monitoring data from Gorongosa’s Conservation 
Program, and represent systematic total counts covering a standardized 
193,500-ha area in the core of the park during the late dry season, when canopy 
cover is lowest. Even the most meticulous counts do not detect all individuals, 

so data should be interpreted as minimum numbers known alive, but we are 
otherwise confident in the accuracy of data for these herbivore populations. 
Lions are particularly difficult to count from the air, and these data substantially  
underestimate total abundance inferred from ground-based monitoring55, but 
we consider them a qualitatively reliable index of relative abundance across 
years.



Extended Data Fig. 8 | Carnivore behavior before and after Cyclone Idai.  
(a) Coefficients ± 95% CIs from step-selection functions (SSFs) fit to GPS 
telemetry data from African wild dog (the only pack present at the time of this 
study) and lion, showing selection for elevation, termite mounds, and distance 
to flood waters in the two weeks before (purple) and after (yellow) Idai (cf. Fig. 2a). 
(b) Both species exhibited moderate displacement from their ranges, moving 
away from Lake Urema in the weeks after landfall (yellow lines compare the 
week prior to 15 Mar. 2019 to weekly bins thereafter; thin, individuals; bold, 
population) relative to periods immediately before the cyclone (purple lines 
compare the week prior to 1 Feb. 2019 to weekly bins thereafter; cf. Fig. 2b).  

c–e, Whereas no shift in lion diet was detected, the proportion of waterbuck 
among confirmed wild dog kills increased after the cyclone (c; sample sizes  
for each time period at top). This shift was associated with a greater overall 
difference in wild dog diet composition before versus immediately after the 
cyclone as quantified using DNA metabarcoding and visualized here by 
nonmetric multidimensional scaling (NMDS) ordination of Bray Curtis 
dissimilarity values (d; markers correspond to individual fecal samples). 
Relative read abundance (RRA) of prey DNA in wild dog scats independently  
the general pattern observed in the kill data (e; means ± s.e.m.).
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Extended Data Table 1 | Parameter estimates from species-specific models of monthly herbivore distribution (proportion of 
detections at each camera location) after March 15th in the cyclone year (2019) versus two non-cyclone years (2017, 2018)

Columns are generalized linear mixed model parameter estimates (β), standard errors (s.e.) and P-values. Predictors are distance (m) from Lake Urema (‘lake’, a continuous variable), 
log-transformed to adhere to model assumptions; months since 15 March, the date of cyclone landfall in 2019 (‘month’, continuous); and whether or not a cyclone occurred in the year (‘cyclone’, 
binary, ‘1’ for the cyclone year, 0 for non-cyclone years). Boldface denotes statistically significant effects (P ≤ 0.05). Coefficients were directionally consistent across species in all but one case and 
indicate fewer detections after the cyclone, especially near the lake, and especially in the immediate aftermath (Fig. 2c). Our inferences are based primarily on the three-way cyclone:lake:month 
interaction, with significant effects for 4 of 5 species showing that Idai changed herbivore distributions relative to Lake Urema, and that this effect depended on time since landfall.



Extended Data Table 2 | Summary of cyclone-trait interactions for dietary metrics

For dietary dissimilarity (turnover, top row), we report results (coefficient ± s.e., P-value) of linear models containing the focal trait (body mass and habitat affiliation) as the only predictor; the 
response variable was each species’ Z-score of dietary dissimilarity between the periods immediately preceding (November 2018) and following (April 2019) Cyclone Idai compared with all 
other pairs of seasons (as in Fig. 4a). For the other two metrics (family-level dietary richness, dietary digestibility), we report cyclone×trait interactions from generalized linear mixed models 
containing fixed effects of year, each focal trait, and their interaction, with per-species random intercepts. Models of dietary richness used a Poisson error distribution, models for digestibility 
(logit-transformed) used a Gaussian distribution. Models for the early-dry season contained interaction terms for each of the non-cyclone years (2016 and 2018).
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